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Magnetism and orbital ordering in an interacting three-band model: A dynamical mean-field
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Single-site dynamical mean-field theory is used to determine the magnetic and orbital-ordering phase dia-
gram for a model of electrons moving on a lattice with three orbital states per site and with the fully rotation-
ally invariant Slater-Kanamori on-site interactions. The model captures important aspects of the physics of
transition-metal oxides with partially filled 7,, shells and of electron-doped Cg). We introduce an unbiased,
computationally simple, and inexpensive method for estimating the presence of two-sublattice order, determine
the regimes in which spatially uniform and two-sublattice spin and orbital orderings are present and give
physical arguments for the origins of the different phases. Guidelines are determined for optimizing the
presence of ferromagnetism, which may be desirable in applications.
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I. INTRODUCTION

Orbital degeneracy is believed to play a crucial role in the
physics of many “strongly correlated” materials' of current
interest, including “early” transition-metal oxide compounds
such as the lanthanum/strontium titanates? and vanadates,’~
“late” transition-metal oxide compounds such as the Sr/Ca
ruthenate series,®® and nontransition-metal oxide com-
pounds such as the A,Cg, series.” An important aspect of the
physics of these compounds is the interplay between electron
itineracy and the rich multiplet structure arising from the
projection of the Coulomb interaction onto the orbitally de-
generate on-site subspace.

The single-site dynamical mean-field approximation'® has
had great success in treating the physics of materials in
which only a single orbital is relevant. However, technical
complications associated with the proper treatment of the full
multiplet interactions have until recently caused difficulties
in the application of this formalism to the multiorbital case.
The single-band applications were often based on the use of
the Hirsch-Fye quantum Monte Carlo (QMC) method'!
which does not have a straightforward generalization to
the interactions present in the multiorbital case. A variant
of the Hirsch-Fye method involving multiple auxiliary fields
has been developed; however this method encounters a se-
vere sign problem and difficulties with preserving rotational
invariance in practice.'> Most published studies therefore
involved approximations in which the exchange and pair
hopping terms of the full Coulomb interaction were
either neglected, treated via uncontrolled analytical
approximations,'3-1> or approximated in a way which breaks
the rotational invariance.'®

The recent development of continuous-time quantum
Monte Carlo methods!”!° along with improvements in the
exact diagonalization technique®?%?! have made feasible a
comprehensive theoretical treatment of multiorbital models
with the fully rotationally invariant interactions.”>~2* In this
paper we use single-site dynamical mean-field theory
(DMFT) techniques to determine the orbital and magnetic
ordering phase diagram of a three-orbital model. The work is
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an extension of a previous study of the paramagnetic (P)
phases of the model.>* We show that some but not all of the
Mott transitions are pre-empted by magnetic and/or orbital-
ordering transitions, determine the relation of the magnetic
phase diagram to the non-Fermi-liquid instability discussed
in previous work?} and demonstrate that for the model we
study ferromagnetism exists only at carrier concentrations
n>1 and for very strong correlations. On the technical side
we introduce a computationally inexpensive method to esti-
mate the location of the phase boundary separating phases
with uniform or two sublattice orbital and magnetic order
from phases with no long-ranged order, and where the order
occurs estimate the transition temperatures.

The rest of this paper is organized as follows. Section II
presents the model to be studied and the methods we use,
including the simple approach for identifying phase bound-
aries, Sec. III presents the phase diagram and gives physical
arguments elucidating the origin of the various ordered
phases, Sec. IV presents some results on the temperature
dependence of phase boundaries, and Sec. V is a summary
and conclusion, outlining the implications of our results for
experiments and prospects for future work.

II. MODEL AND METHODS

A. Model

We analyze the “three-band” model defined by the Hamil-
tonian

H:Hband+Hint (1)
with
Hband == E tsﬁwjaolpjﬂa' - 2 MNiggs (2)
(ij)aBo iao
1 T
Hint = E E Uaﬁ(r(r’nimrniﬁzr' -J E (lr/,ial lr//IBT (/fiﬁl lzbiaT
iaBoa’ La#p

+ 11’%'/’3@‘/’m¢m1 +H.c.). (3)

H,y,nq includes the usual electronic hopping between orbitals
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a=1,2,3 on site i and orbital B on site j, and the chemical
potential w. The fourier transform of tfj’-ﬁ is a dispersion E(p)
which is a matrix in orbital space. The two terms in Eq. (3)
are the on-site interaction. The form of this term follows
from symmetry considerations. The various Uz, terms are
equal to (i) U when a=8,0# ¢’, (ii)) U'=U-2J when «
#B,0#0', and (iii) U' -J=U-3J when a# B,0=0";
where U(U’) accounts for intra(inter)orbital Coulomb repul-
sion among orbitals a and B. J in the last term is the coef-
ficient of the spin exchange and pair-hopping terms. We shall
be interested in cases in which the point-group symmetry of
the lattice guarantees that (in the absence of spontaneous
symmetry breaking) the on-site Green’s function G*#(R
=0,w)~ 5aﬁ; this condition is satisfied in the materials listed
in the introduction.

B. Dynamical mean-field approximation

To solve Eq. (1) we use the single-site dynamical mean-
field method!'® which neglects the momentum dependence of
the self-energy. To study magnetic or orbital orderings which
spontaneously break the translational symmetry of the lattice
down to a lower symmetry characterized by several sublat-
tices, one must, in principle, introduce a quantum impurity
model for each sublattice and take the self-energy for the
lattice problem to be local, but different on each sublattice.
For simplicity we focus here on two sublattice orderings. We
may then associate a sublattice index A=e or o to the self-
energy (which also may be a matrix in spin and orbital
space), distinguish hopping between the same and different
sublattices and write the lattice Green’s function as a two by
two matrix in sublattice space

G_l _ (C!) - Esame(p) - Ee(w)

Egier(p) )
Egie(p) '

= Esame(p) - Ea(w)
(4)

We assume that in the absence of spontaneous symmetry
breaking (i.e., if X,=3,~ 5:‘;?02) the dispersions Eg,pe 4ifr are
such that the local Green’s function

Gioc() = f (dp)G(p,w) (5)

is proportional to a diagonal matrix in orbital space. This is
enforced by symmetry if the hopping terms respect the point-
group symmetry of the site and may be a good approxima-
tion in more general situations. In this case the only impor-
tant feature of the hopping is the density of states.

The self-energies 2., , are obtained from the solution of
quantum impurity models (one for each sublattice \) of the
form

Hoppn=- > (- Ao o+ Hioe + Hyyy + Hya,  (6)

a,o

with n, ) the density of electrons of spin o on orbital & in
the model pertaining to sublattice A and u the chemical po-
tential. We also find it useful to include parameters A which
generalize Eq. (1) to allow for the possibility of an explicitly
broken point-group symmetry, either arising physically from
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an applied uniaxial or biaxial strain or used as a mathemati-
cal device to study the stability of the different possible or-
dered states. These terms could be encoded in the site-
diagonal #;; terms but it is more convenient to add them to
Eq. (6).

Spontaneous symmetry breaking is signaled by the ap-
pearance of a spin, orbital or sublattice-dependent Hartree
term in the self-energy. The interaction term H,,. consists of
the on-site interaction terms of the original model. The re-
maining terms, Hyy, and Hy,, are bilinear in fermion opera-
tors and produce a hybridization function F*(w) which is a
matrix in spin and orbital space and whose form is fixed by
the self-consistency condition that the Green’s function of
the quantum impurity model pertaining to sublattice X, G,
be equal to the A—\ component of G, [Eq. (5)]: G¢/*
=Gi.

In this paper we employ the semicircular density of states
p(€)=\41*>—€/(2mt?), corresponding to a Bethe lattice with
infinite coordination number and a fully bipartite hopping
Hamiltonian [E,,. in Eq. (4) =0]. The parameter 7 is just a
measure of the bandwidth implied by the hopping ¢#; in Eq.
(2). For this case the self-consistency equation in the general
two-sublattice case becomes

]:A,a,a(_ (1)) == tzGB,a,o(w) (7)

with F, , , the hybridization function for sublattice A with
orbital & and spin o and Gg , , the local Green’s function on
the other sublattice.!® The self-consistency equation for the
translation-symmetry unbroken case is obtained by setting
Gp— G, in Eq. (7) and not considering the B sublattice. We
solve the quantum impurity model using the methods intro-
duced in Refs. 18 and 19. The self-consistency condition is
solved by iteration.

For comparison we have also solved the model in the
Hartree Fock approximation using standard methods. For
this problem the Hartree-Fock approximation is equivalent to
replacing the full dynamical mean-field self-energy by

87 = Ulngg) + 2 {(U=20)nge) + (U=31)ngm} (8)
B*a

with o the spin direction opposite to o and «a,f labeling
orbitals. The expectation values are determined self-
consistently. The solution of the Hartree-Fock equations is
simplified by the observation that the system becomes fully
spin polarized before orbital ordering occurs.

C. Method of determining two-sublattice ordering

Finding orbitally and magnetically ordered solutions in-
volves solving several quantum impurity models; it is there-
fore computationally more expensive than studying the para-
magnetic case; in addition one must (as in any mean-field
theory) choose which symmetry breaking to investigate. We
have found, however, that the presence of two-sublattice or-
der is indicated, to a good approximation and in an unbiased
way, by an oscillatory behavior in the solution of the dy-
namical mean-field equations using the self-consistency con-
dition appropriate for the case with unbroken translational
symmetry. In studies of the symmetry-unbroken phases of
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FIG. 1. (Color online) Variation in the on-site orbital occupancy
(n) and magnetization (m) with number of iterations of the dynami-
cal mean-field self-consistency condition, computed for a semicir-
cular density of states at density n=1 with Br=50, U/t=16, and J
=U/6. Panel A: iteration number dependence of the magnetization
(summed over all orbitals); saturation indicates a ferromagnetic
state with moment m=~0.65n. Panel B: iteration number depen-
dence of occupancies of the three orbitals, obtained from a
translation-symmetry-unbroken [Eq. (7) with Gg— G,] dynamical
mean-field equation; oscillations of the occupancy indicate two sub-
lattice orbital ordering. Panels C and D: iteration number depen-
dence of occupancies of the three orbitals for sublattice A (panel C)
and sublattice B (panel D), obtained from the general self-consistent
condition Eq. (7); saturation of occupancies to a two-sublattice or-
bital state is evident. Error bars have the same size as the data
points.

quantum impurity models it is common practice to enforce
the lack of order and improve the statistical accuracy by
symmetrizing the hybridization function at each iteration of
the self-consistency equation. However, if this is not done,
then the dynamical mean-field self-consistency procedure
will sometimes fail to converge, exhibiting instead an oscil-
lating behavior which, we argue, signals the presence of two-
sublattice ordering.

Figure 1 presents a particular example: results of a dy-
namical mean-field solution of the three-orbital model with
semicircular density of states, interaction strength U/t=16,
inverse temperature Bt=50, and density n=1. We have also
investigated other parameters with similar results. For these
parameters the model is in its Mott insulating regime, and as
will be seen has ferromagnetic (F) spin ordering and two-
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FIG. 2. (Color online) Iteration number dependence of the or-
bital occupancies for a simulation with parameters as in Fig. 1 but
started in a broken-symmetry state with different orbital occupan-
cies than the stable state. The simulation relaxes to the same final
state as in the case of an orbitally symmetric initial state (panel B of
Fig. 1).

sublattice orbital ordering. The dynamical mean-field equa-
tions are solved by iteration from a nonordered seed state
and the results are plotted against iteration number. Figure
1(A) presents the magnetization summed over all orbitals
[the result is essentially the same whether the full Eq. (7) or
its translation-symmetry-unbroken special case is used]. One
sees the magnetization increase and saturate. Figure 1(B)
presents results obtained for the occupancies of the indi-
vidual orbitals using the version of Eq. (7) in which the
translational-symmetry breaking is not allowed (Gz— G,).
One sees that a stable solution is not obtained. Instead, there
is an oscillation between two states with different orbital
occupancies. To demonstrate the meaning of this oscillation
we present in panels C and D results obtained from a solu-
tion of Eq. (7), which explicitly allows for two sublattice
translational-symmetry breaking. Panel C shows orbital oc-
cupancies corresponding to one sublattice and panel D to the
other sublattice. Comparison to panel B shows that the two
states between which the calculation with enforced transla-
tional symmetry oscillates correspond to the states of the two
sublattices in the ordered solution. We have verified that the
results are robust to changing the simulation conditions (ac-
curacy of measurements) or varying the initial conditions
either by using a different random number seed or by con-
sidering a physically different initial state. An example is
shown in Fig. 2, where we start the simulation in a state with
different values of orbital occupancies. Note that when the
two-sublattice equations are used with a symmetric initial
condition, two-sublattice order may sometimes require a
large number of iterations to develop, either because of a
small Lyapunov exponent describing the growth of the
broken-symmetry phase or because the symmetry-unbroken
state is locally stable, so that one must wait for a fluctuation
which is large enough to activate the system over a barrier.

Of course, the existence of a two-sublattice solution to the
mean-field equation which persists for many iterations indi-
cates at best the presence of a locally stable phase, and the
parameter at which such a solution appears or disappears
may indicate a spinodal point, as in many circumstances the
transitions between phases are first order. An energy analysis
would be required to determine the precise location of the
phase boundaries, and the energy differences involved are
often very small [for example, the energy of the Ol para-
magnetic insulating state at n=1 and U=16¢ is found to dif-
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fer from that of the paraorbital (PO) paramagnetic state by an
amount of order 0.3% of the total energy]. The phase bound-
aries presented in the rest of this paper are obtained by de-
termining the onset of oscillations in the solution of the
translation-symmetry-unbroken equations and should be un-
derstood with these caveats.

It appears (although we have investigated this point in
less detail than we have investigated the phase boundaries)
that the oscillation method provides reliable information not
only on the presence of two-sublattice order but also on the
amplitude of the order parameter and other physical proper-
ties. If the oscillation method leads to a period-two oscilla-
tion (as seen, e.g., in Panel B of Fig. 1) we interpret the two
solutions as pertaining to the two sublattices of the ordered
state. Spot checks using the full self-consistency condition
verified the correctness of this procedure. For example, the
orbital occupancies seen at large iteration number in panel B
of Fig. 1 agree (within numerical errors) with the orbital
occupancies obtained from the solution of the full broken-
symmetry equations (panels C and D). The phase diagrams
and results for orbital-ordering amplitudes presented in the
following text are obtained from the solution of the oscilla-
tion method.

III. PHASE DIAGRAM
A. Overview

Figure 3 presents the phase diagram in the plane of Cou-
lomb repulsion and band filling obtained using the methods
described above with J fixed to be U/6 and at the low tem-
perature Br=50 (temperature 1/200 of the bandwidth). We
note that we have considered only uniform phases and
phases with two-sublattice order. The presence of longer pe-
riod order cannot be ruled out; it is particularly likely to
occur in the metallic phases at incommensurate density or for
models with a more complicated density of states than has
been considered here. The phase diagram exhibits insulating
phases at integer band fillings n=1,2,3 and sufficiently
strong interactions. An additional feature of the present paper
relative to earlier work is the explicit inclusion of orbital and
magnetic ordering. Comparison to Fig. 2 of Ref. 24 shows
that the inclusion of ordering does not shift the position of
the Mott lobes appreciably: the critical U at the tip of the
n=1,2 lobes is essentially unchanged.

Away from integer doping the phases are metallic. The
various magnetically and orbitally ordered phases and their
phase boundaries are indicated, as is the boundary to a phase
discovered in earlier work?® that is characterized by frozen
moments and a non-Fermi-liquid self-energy. We have made
selective studies of other values of J finding little impact on
the qualitative features of the phase diagram. For example,
for n between 1 and 2, increasing J to U/4 shifts the mag-
netic phase boundary downwards in U by about 0.5¢. The
inset presents the Hartree-Fock phase diagram, which is dis-
cussed below.

The phases we find are apparently stable against phase
separation. Figure 4 shows the energy computed as a func-
tion of density for U=16¢; the upward concavity required for
stability against phase separation is evident.
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FIG. 3. (Color online) Main panel: phase diagram of the three-
band model with semicircular density of states at Br=50 and J
=U/6 in the plane of particle density n and interaction strength U.
The vertical lines indicate the Mott insulating phases at integral
values of n. The magnetic state is labeled by P, F, and A (two
sublattice antiferromagnetic) while the labels O(n) denote the three
classes of orbital ordering discussed in the text. The heavy dashed
line (orange online) gives the boundary of the non-Fermi-liquid
frozen-moment phase discovered in Ref. 23. Inset: Hartree-Fock
phase diagram for magnetic phases of the same model. Magnetic
phase boundaries are indicated by solid lines and orbital-ordering
boundaries by dashed lines. OO and OS stand for the orbitally
ordered and orbitally symmetric phases, respectively. All transitions
are second order except the FM-AFM transition and the orbital-
ordering transitions at U= 12¢ and small n.

B. Magnetic phases

In the density range 0<n<1 we found no evidence for
magnetic order in the range of interaction strength studied.
Ferromagnetic phases do occur at n=1 (although for the larg-
est U studied the Curie temperature falls below Br=50 so no
order is detected in our calculations). Ferromagnetic phases
also occur for 1<n<2. At n=2 any uniform or two-
sublattice magnetic transition is below the temperature Bt
=50 of this study. We suspect that at n=2 the magnetic order
is actually incommensurate or has a higher order commen-
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FIG. 4. (Color online) Internal energy E computed as a function
of density per site n at Bt=50, U/t=16. Vertical lines give the
positions of phase boundaries presented in Fig. 3.
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surability as was found for intermediate couplings in other
models with noninteger number of electrons per orbital per
site.?> Ferromagnetism is also found for a range of n between
2 and 3 while a two-sublattice antiferromagnetic state exists
for n=3.

Note that the perfect nesting of the model we study im-
plies that at half filling (n=3) the antiferromagnetic phase is
the ground state for all U>0. The small U limit of the anti-
ferromagnetic phase marks the point at which the Neel tem-
perature falls below the temperature 7=¢/50 used in the
computations.

A frozen-moment phase was recently reported by two of
us in the three-orbital model.>* The boundary to this phase is
shown as the dotted line (brown online) in Fig. 3. Our results
indicate that the frozen-moment phase is pre-empted by the
ferromagnetic phase for strong correlations but that the fro-
zen moment phase (which presumably indicates a nonuni-
form magnetic state; either disordered or a long-period spi-
ral) exists over a wide range of dopings at weaker
correlations.

Remarkably, in the dynamic mean-field theory calcula-
tions the ferromagnetic phase appears to be confined to in-
teraction strengths on the order of or larger than the critical
value for Mott insulating behavior and to densities greater
than or equal to 1. Changing the Hunds coupling J over the
physically relevant range J << U/3 does not change the results
significantly. The DMFT results are in sharp contrast to the
Hartree-Fock results shown in the inset of Fig. 3 which in-
dicate a much wider range of ferromagnetism and orbital
order, extending, in particular, to much lower U and to den-
sities n<<1. Our results suggest that LDA+U band theory
calculations, which are in essence a Hartree-Fock approxi-
mation to the strong on-site interactions, may severely over-
estimate the range in which ferromagnetism and orbital order
occurs.

The absence of ferromagnetism at carrier concentrations
n<1 is similar to results obtained for two-orbital models by
Momoi and Kubo?® using a dynamical mean-field method
with an exact diagonalization solver and Held and
Vollhardt'® using Hirsch-Fye QMC with only the Ising com-
ponent of the Hunds interaction retained and also to very
recent Gutzwiller approximation calculations?’ which, how-
ever, yield a much wider range of ferromagnetism at n> 1
than is found in our calculations.

C. Orbital ordering

We now turn to the complex orbital-ordering phase dia-
gram revealed in Fig. 3. All the d-orbital orderings predicted
by our DMFT calculations are staggered, rather than homo-
geneous in space. The nature of the phases is explicated in
Table I, but the information about occupancies must be in-
terpreted with care. For example, minimizing the interaction
energy at density n=1 leads to a two-sublattice-ordered
phase. In this phase, one sublattice has one orbital (say or-
bital 1) occupied and the other two (2 and 3) empty, while in
the alternate sublattice orbital 1 is empty and orbitals 2 and 3
are half-filled. We believe the correct physical interpretation
of the half-filled state is that it represents an incoherent su-
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TABLE I. Characterization of orbital orders. nﬁ gives the den-
sity of electrons of the « orbit in sublattice A, etc. d'is the deviation
of the total density n from the integer value 1 for O1 and O3a or 2
(O3b). Arrow lengths indicate magnitudes of densities.

Types

of ordering B

o

(nﬁ,n’;, n/;\ n ,ng, ng) Symbols

o1 (1-8.5.8)6.5.1 Tt
02 L11,1,0) M1 T1ITTo
03a (1-25,28,5|5,28,1-26) Tttt
03b @o.1-26.1-001-6.1-2628 (1 TTITTn

perposition of the state with orbital 2 filled and 3 empty and
the reverse, so that in the lattice the state corresponds to a
highly degenerate set of states in which half of the sites in
one sublattice have orbital 2 occupied while the other half of
the sites on this sublattice have orbital 3 occupied. Support-
ing evidence for this interpretation comes from the measure-
ment of the (n,n5) equal-time-correlation function. At carrier
confentration n=1 it is found to be very small (of order
107%).

This behavior can also be understood by considering the
strong coupling limit. If we assume a fully spin-polarized
ferromagnetic state then the strong coupling Hamiltonian de-
scribing the orbital ordering is (to leading order in #/U) an
antiferromagnetic three-state Potts model with nearest-
neighbor interactions. On the cubic lattice this model is
known to have a low-temperature phase with precisely this
structure.?® It is remarkable that this nontrivial state is cor-
rectly identified by our simple “find the oscillations in the
DMFT iteration” procedure. We observe that considering
higher orders in ¢/ U would lead to longer ranged interactions
which would lift the degeneracy, leading to ordered states
characterized by larger unit cells beyond the scope of our
calculation. We suggest that the four-sublattice state dis-
cussed for LaTiO; by Pavarini et al.? is of this type.

Doping changes the nature of the phase, converting the
second sublattice from gapped to metallic (albeit with a low
Fermi-liquid temperature) in which the low-T phase is (on
long-time scales) a coherent combination with each of the
two sites approximately half occupied. In this phase the
equal-time (n,n) correlation function is larger, of order 1072,
This phase, which is the stable solution of the DMFT equa-
tions, has within our 0.1% accuracy the same energy as a
fully orbitally symmetric weakly ferromagnetic metal phase
and it is possible that this latter phase (which we typically
find to be unstable to the O1 phase) is the true ground state
for some dopings.

As seen in Fig. 3, further doping produces a transition to
the O3a state. We have verified that raising the temperature
shifts the phase boundary between O1 and O3a near n=1 to
the right as expected if Ol is the high-entropy Potts model
state whereas O3a is a lower entropy state. Similar argu-
ments also apply for the competing orders O2 and O3b.
However, the situation near n=2 differs in two important
respects from that near n=1: the O2 phase seems not to
survive even an infinitesimal doping, and the O2 phase is
entirely paramagnetic.
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FIG. 5. (Color online) Magnetization, m, plotted against inter-
action strength U for different inverse temperatures [ at density n
=1 indicating a very rapid onset of magnetism as the material enters
the Mott insulating phase and a weakly interaction-strength depen-
dent Curie temperature at large U.

The trends in the phase boundaries suggest that at strong
coupling the intermediate disordered phase separating the
03a and O3b phases will be eliminated. We observe that at
6=1/2 the O3a and O3b phases become identical, implying
that for large enough U where the disordered phase vanishes,
the O3a and O3b states are adiabatically connected.

Finally, we observe that the Hartree-Fock approximation
(inset to Fig. 3) predicts a transition to an orbitally ordered
state. The Hartree-Fock transition to the orbitally ordered
phase occurs at relatively large U, such that (within Hartree
Fock) the spins are fully polarized. The transition is found to
be second order except at very large U=12¢ and small n,
where it becomes first order. Again we regard the qualitative
difference between the Hartree Fock and DMFT results as
indicating that caution is necessary in interpreting LDA+U
calculations.

IV. TEMPERATURE DEPENDENCE

In this section we consider the temperature dependence of
the order parameters and the nature of the thermally driven
phase transitions. Figure 3 indicates that in the Mott insulat-
ing phase at n=1 and at our chosen temperature B¢t=50, the
system exhibits a phase transition from the ferromagnetic to
the paramagnetic phase as U is increased above U~ 18t. To
clarify the nature of this phase transition, we present in Fig.
5 the dependence of the magnetization on interaction
strength for different temperatures. The rapid and apparently
T-independent onset of the magnetization at U~ 11.5¢ sug-
gests a first-order magnetization onset which seems to coin-
cide with the onset of the Mott insulating phase. More de-
tailed studies are required to clarify the behavior near U
=111z precisely. For the larger U behavior, comparison of the
curves corresponding to different temperatures reveals a
weakly U-dependent Curie temperature, on the order of
0.022¢ at U~ 14.5¢, 0.02 at U=18.5¢ and decreasing slowly
for larger U, consistent with the ferromagnetic superex-
change ~#%/ U expected in this orbitally degenerate situation.

To investigate the effect of doping we plot in Fig. 6 the
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FIG. 6. (Color online) Square of the magnetization (normalized
to density) for various magnetic phases at Br=50 and U/r=16. the
curve shown for density n=1 corresponds to an insulating phase,
while all other phases are metallic. The PO phases, n
~12,1.5,1.75 have higher Curie temperature (kzT/t
~0.05-0.07) than the orbitally ordering phases.

temperature dependence of the square of the magnetization,
normalized to the particle density for various dopings be-
tween 1 and 2 at a U somewhat larger than the Mott critical
values. At low T the spin polarization is complete (m=n)
except perhaps in the n=1 insulating phase. One sees that
metallic phases have higher Curie temperatures than insulat-
ing phases, and paraorbital phases higher Curie temperatures
than orbitally ordered phases. The maximal value of the tran-
sition temperature is seen to occur about half way between
the Mott lobes, i.e., at n= 1.5, where the model is maximally
metallic. This finding is consistent with the argument of Mo-
moi and Kubo?® that the physics of ferromagnetism in mul-
tiorbital models is related to the physics of “double ex-
change:” the strong interaction and nonvanishing Hunds
coupling puts each site into its maximal spin state and the
ferromagnetic transition temperature is then determined by
the energetics of carriers hopping in the locally spin-
polarized background.

Figure 6 also indicates that except very near to the Mott
insulating phases, the temperature-driven ferromagnetic tran-
sition is very steep, indeed within our accuracy apparently
discontinuous. It is interesting that apparently first-order be-
havior is most pronounced for dopings where there is no
orbital order, while if orbital order is present the transitions
seem more continuous.

Figure 7 shows the temperature dependence of the order
parameter for orbital ordering for several different carrier
concentrations. The relative orbital-ordering strength shown
in the figure compares the deviation of n/; from n/3 (the
paraorbital value) to the corresponding value at low tempera-
ture (kzT=0.02¢). The staggered orbital ordering has its criti-
cal temperature at around kzT/t~0.04—0.05 and neither the
value of the transition temperature nor the order of the tran-
sition depends on whether the system is metallic or insulat-
ing , paramagnetic or magnetic. In the region where both
orbital and magnetic ordering occurs the orbital-ordering
transition temperature is higher than the magnetic one.
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FIG. 7. (Color online) Relative orbital-ordering strength for
various phases at Br=50 and U/r=16. “Relative orbital-ordering
strength” is the deviation of the occupancy of one orbital from the
paraorbital value (n/3) normalized to the value at our lowest mea-
surement temperature kz7=0.02¢; mathematically [nﬁ(kBT> 0.02¢)
il [ (kgT= 0.027)—-%]. The transitions from the orbital selective
to the paraorbital phase are apparently second order. The transition
temperatures are not sensitive to the metallic or insulating (M/I),
paramagnetic of ferromagnetic (P/F) or orbital ordering natur
(01,02,03; see Table 1) of the low-T phase.

V. CONCLUSIONS

We have used the single-site dynamical mean-field ap-
proximation to determine the magnetic and orbital-ordering
phase diagram of a three-band model with realistic rotation-
ally invariant multiplet interactions and have introduced a
computationally simple and unbiased method for identifying
the presence of two-sublattice long-ranged order from an os-
cillation with iteration number in the symmetry-unbroken
DMFT equations. We find that the Mott insulating phases at
band fillings n=1 and 2 per site are unstable toward a two-
sublattice orbital ordering of the degenerate type associated
with the three-state Potts model on a bipartite lattice,”® while
as expected at n=3 the Mott phase is pre-empted by Neel
ordering. It is interesting that the nontrivial ground state is
the one identified by the unbiased method of examining os-
cillations in the DMFT iterations. Ferromagnetism occurs at
n=1 and for n between 1 and 2 and for carrier concentrations
greater than n=2 but not too close to n=3. The onset tem-
peratures for orbital and magnetic ordering are low, on the
order of 1-2 % of the full bandwidth.

Remarkably, at n=1 and 2 the orbital ordering is essen-
tially coterminus with the Mott phase: orbital ordering seems
not to exist for interactions less than the Mott critical value,
and only a tiny region of the Mott phases (U within a few
percent of U,) appears not to have orbital ordering. A high
precision study, which is beyond the scope of this work,
would be required to verify the detailed behavior for U
=~ ,,. It is of course also possible that a longer period or-
dering (not considered in our work) would extend also into
the metallic phases away from the Mott region. These issues,
as well as the possibility of phase separation, are important
topics for further investigations.
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Ferromagnetism is found only for large interaction
strengths, greater than or on the order of the critical values
needed to drive a Mott transition at n=1,2 and only for
carrier concentrations greater than n=1 per site but not too
close to n=3 per site. As also discussed by Momoi and
Kubo, the physics of ferromagnetism in the multiorbital
models appears to be related to the physics of double ex-
change and orbital selectivity: at n>1 and strong correla-
tions one orbital becomes occupied by one (spin-polarized)
electron; this occupied orbital acts as a “core spin” whose
orientation controls the hopping of the remaining electrons,
leading to ferromagnetism similar to that in the manganites.
For n<1 the core spin effect is absent, and we expect that
the physics of ferromagnetism is similar to that discussed in
the context of the one-orbital Hubbard model,?® where den-
sities of states peaked in the band center (as is the case for
the semicircle) disfavor ferromagnetism and densities of
states peaked at the band edges favor it. We have found that
varying the value of J within a physically reasonable range
does not change the phase boundaries appreciably. However,
the considerations from the one-orbital Hubbard model sug-
gest that even for n>> 1 variations in the density of states, in
particular, shifting the maximum away from the center of the
band toward a band edge may widen the range over which
ferromagnetism exists.

The development of “oxide heterostructures™® has
opened new avenues for material design. In the context of
the LaTiO;/SrTiO; and LaAlO;/SrTiO; heterostructures
theoretical’!*? and experimental®? reports of ferromagnetism
have appeared. The materials of interest in these latter stud-
ies, however, were titanate based, corresponding to densities
n<1. The theoretical predictions of ferromagnetism and or-
bital ordering were based on the LDA+U approximation,
which is in effect a Hartree-Fock approximation to the local
correlations. Our dynamical mean-field results cast doubt on
these theoretical predictions and suggest that the magnetic
behavior observed in Ref. 33 may be due to something other
than an interface ferromagnetic phase. Our results suggest
that attempts to obtain a ferromagnetic electron gas at an
oxide interface should focus on electron doping a material
with n=1 or holedoping a material with n=2 and on arrang-
ing the bands to have an appropriate density of states.

Three-orbital models arise in a number of other physically
important contexts, including doped Cg, where, however, re-
cent results suggest that lattice-structure effects may be
important.>* Extending our results to models with more real-
istic densities of states is a high priority for future research.
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